8 research outputs found

    Mangiferin: A Promising Anticancer Bioactive

    Get PDF
    Of late, several biologically active antioxidants from natural products have been investigated by the researchers in order to combat the root cause of carcinogenesis, i.e., oxidative stress. Mangiferin, a therapeutically active C-glucosylated xanthone, is extracted from pulp, peel, seed, bark and leaf of Mangifera indica. These polyphenols of mangiferin exhibit antioxidant properties and tend to decrease the oxygen-free radicals, thereby reducing the DNA damage. Indeed, its capability to modulate several key inflammatory pathways undoubtedly helps in stalling the progression of carcinogenesis. The current review article emphasizes an updated account on the patents published on the chemopreventive action of Mangiferin, apoptosis induction made on various cancer cells, along with proposed antioxidative activities and patent mapping of other important therapeutic properties. Considering it as promising polyphenol, this paper would also summarize the diverse molecular targets of Mangiferin

    Combination Treatment With Oxyplatlin And Mangiferin Causes Increased Apoptosis And Downregulation Of Nfkb In Cancer Cell Lines

    No full text
    Mangiferin-mediated down-regulation of NFκB showed potential for chemotherapeutic agent-mediated cell death, suggesting a role in combination therapy for cancer. In this study the combined mechanism of the anticancer action of oxaliplatin and mangiferin was investigated. MTT dose response curves, trypan blue staining, caspase 3 assays as well as DNA cell cycle analyses were performed on HeLa, HT29 and MCF7 cancer cell lines, with and without the addition of 10 µg/ml mangiferin. Mitochondrial membrane potential, DNA fragmentation, resistance induction studies and NFκB assays were performed on HT29 cells only. Addition of 10 µg/ml mangiferin reduced oxaliplatin IC50 values in HT29 (3.4 fold) and HeLa (1.7 fold) cells in the MTT assay while reducing trypan blue staining. This was accompanied by increased caspase 3 activation and DNA fragmentation and a delay in the S-phase of the cell cycle. Mitochondrial membrane permeabilization was not enhanced in the combination treatment. Mangiferin was shown to cause a reduction of NF-κB activation in HT29 cells rendered resistant to oxaliplatin. The present study indicates that mangiferin in combination with oxaliplatin favours apoptotic cell death and thereby improves the efficacy of oxaliplatin in vitro. In addition, combination therapy with mangiferin may also counteract the development of resistance in cancer cell lines

    Combination Treatment with Oxaliplatin and Mangiferin Causes Increased Apoptosis and Downregulation of NFκB in Cancer Cell Lines

    Get PDF
    Mangiferin-mediated down-regulation of NFκB showed potential for chemotherapeutic agent-mediated cell death, suggesting a role in combination therapy for cancer. In this study the combined mechanism of the anticancer action of oxaliplatin and mangiferin was investigated. MTT dose response curves, trypan blue staining, caspase 3 assays as well as DNA cell cycle analyses were performed on HeLa, HT29 and MCF7 cancer cell lines, with and without the addition of 10 µg/ml mangiferin. Mitochondrial membrane potential, DNA fragmentation, resistance induction studies and NFκB assays were performed on HT29 cells only. Addition of 10 µg/ml mangiferin reduced oxaliplatin IC50 values in HT29 (3.4 fold) and HeLa (1.7 fold) cells in the MTT assay while reducing trypan blue staining. This was accompanied by increased caspase 3 activation and DNA fragmentation and a delay in the S-phase of the cell cycle. Mitochondrial membrane permeabilization was not enhanced in the combination treatment. Mangiferin was shown to cause a reduction of NF-κB activation in HT29 cells rendered resistant to oxaliplatin. The present study indicates that mangiferin in combination with oxaliplatin favours apoptotic cell death and thereby improves the efficacy of oxaliplatin in vitro. In addition, combination therapy with mangiferin may also counteract the development of resistance in cancer cell lines

    Traditional herbal medicines: potential degradation of sterols and sterolins by microbial contaminants

    No full text
    Medicinal plants with a high content of sterols and sterolins, such as Bulbine natalensis (rooiwortel) and Hypoxis hemerocallidea (African potato), are commonly and inappropriately used in South Africa for the treatment of HIV/AIDS due to the inaccessibility of antiretroviral drugs. This study investigated the presence of active compounds, such as sterols and sterolins, in the herbal medicines. The research was carried out in the Nelson Mandela Metropole area. The effect of microbial contaminants isolated from the medicines on sterols and sterolins of rooiwortel extracts was assessed. Sterols and sterolins were detected in rooiwortel, raw African potatoes and one ready-made mixture. Co-incubation of rooiwortel with bacteria (Bacillus spp. and Pseudomonas putida) and fungi (Aspergillus spp., Penicillium spp. and Mucor spp.) that were isolated from these samples increased the rate of degradation of sterols and sterolins over time, with slower degradation at 4°C than at 28°C

    The multifaceted role of mangiferin in health and diseases: a review

    No full text
    corecore